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Abstract. We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-
Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the
initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth
exponent α for the Hamming distance and the dynamical exponent z are calculated. These values allow
us to observe a clear data collapse of the finite size scaling for both versions of the Bak-Sneppen model.
Moreover, it is shown that the growth exponent of the distance in the isotropic and anisotropic Bak-Sneppen
models is strongly affected by the choice of the transient time.

PACS. 05.65.+b Self-organized systems – 64.60.Ht Dynamic critical phenomena – 87.23.Kg Dynamics of
evolution

1 Introduction

In 1993, Bak and Sneppen (BS) introduced a simple model
to describe the biological evolution of an ecology of in-
teracting species [1]. Since then, it has attracted quite
some attention among the natural scientists as well as
economists. This wide range of interest comes from the
fact that BS model is the simplest model that exhibits self-
organized criticality [1,2]. The self-organized criticality
feature of the BS model is revealed in its ability to natu-
rally evolve towards a scale invariance stationary state [3].
That is, the correlation length in the BS model is infinite
and an initial local perturbation might lead to a global ef-
fect. Therefore, it is worth to study the sensitivity to the
initial conditions in the BS model.

The technique that we use to study the sensitivity to
the initial conditions in the BS model is known as the
damage spreading technique in dynamical systems theory
and can be described as follows: If we consider two copies
of the same dynamical system starting from slightly dif-
ferent initial conditions and follow their time evolution,
the sensitivity function can be defined as,

ξ(t) ≡ lim
∆x(0)→0

∆x(t)
∆x(0)

= exp (λt), (1)

where λ is the Lyapunov exponent and ∆x(0) and ∆x(t)
are the distances between two copies at t = 0 and t, re-
spectively. Depending on the λ being positive, negative
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or zero three different behavior can be distinguished from
equation (1): (i) λ > 0, the system is said to be strongly
sensitive to the initial conditions, (ii) λ < 0, the system
is said to be strongly insensitive to the initial conditions,
(iii) λ = 0, while the sensitivity function could be a whole
class of functions, for the low-dimensional discrete dynam-
ical systems equation (1) forms a power-law,

ξ(t) ∼ tα, (2)

where α is some exponent and α > 0 and α < 0 cases
correspond to weakly sensitive and weakly insensitive to
the initial conditions, respectively [4–7]. For the high di-
mensional systems like the BS model, the same analysis
could be performed using the so-called Hamming distance
instead of the sensitivity function.

Our task will be to investigate the short-time dynam-
ics of the isotropic and anisotropic BS models on a square
lattice using the standard damage spreading technique.
As far as we know, this technique has not been used in
the literature to investigate the sensitivity to the initial
conditions in 2-dimensional (2d) BS model while there
have been several works in 1d [8–12]. In 2d, with exten-
sive simulations, it is our hope to obtain similar behav-
ior of the temporal and spatial correlation functions with
1d isotropic and anisotropic BS models. Furthermore, we
expect topologically the same short-time evolution of the
Hamming distance with different scaling exponents. In or-
der to identify the dynamical quantities in 2d BS model
we will introduce in the second section the well known
isotropic and anisotropic versions of the BS model and
compare our results for the critical exponent values of
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temporal and spatial correlations to the known findings.
In the third section, we implement the damage spreading
technique on 2d isotropic and anisotropic BS models and
calculate the related critical exponents. The relation be-
tween some model parameters and the critical exponents
is reviewed. Moreover, we analyze the finite size scaling
of the normalized Hamming distance for both versions of
the BS model. Finally, in the last section, we discuss the
results and give some perspectives.

2 Isotropic and anisotropic versions of BS
model

The dynamics of BS model on a 2-dimensional lattice of an
edge size L has simple rules. The initial state of the system
on a square lattice is characterized by N = L × L fitness
values (random numbers) fi, j, where i = 1...L and j =
1...L, uniformly distributed between 0 and 1. These fitness
values are assigned to each site i, j of the lattice with
periodic boundary conditions. The usual dynamics of the
system is eventually achieved by localizing the lattice site
with the minimum fitness fmin and assigning new random
numbers to that site and its first nearest neighbors.

The model described above can be called as an
isotropic BS model since the interaction between the cur-
rent minimum and its first nearest neighbors is the same
in both directions. In other words, if one observes the
minimum fitness value of the system at time step t as
fmin = fi, j then the fitness values fi−1, j, fi, j−1, fi, j ,
fi+1, j and fi, j+1 will be updated at that time step. This
means that the possibility for the minimum to jump to
one of its left or right nearest neighbors or to one of its up
or down nearest neighbors in the next time step is simply
the same, with a resulting isotropic avalanche of events.

On the other hand, one can easily consider alterna-
tive updating rules. One possible alternative could be to
update at each time step fi−u, j , fi, j−�, fi, j , fi+b, j and
fi, j+r (where u, �, b and r are arbitrary positive integers
taken from the interval [1, L]). Let us consider, for exam-
ple, the case of fi−2, j , fi, j−1, fi, j , fi+1, j and fi, j+2. The
system now has an inherent bias to the up and right. This
means that we would expect a preferred direction for an
avalanche to propagate. Therefore, this model is called as
the anisotropic BS model. In principle, several types of
anisotropy can be introduced by changing the values of u,
�, b and r, provided that � �= r and u �= b (since � = r
and u = b represents the isotropic BS model). The maxi-
mal anisotropic cases are defined by � = 0 (� = 1), r = 1
(r = 0) and b = 0 (b = 1), u = 1 (u = 0) whereas other
definitions are considered as intermediate anisotropies. In
this work, we use the maximal anisotropic case in all sim-
ulations since the convergence is faster than the interme-
diate anisotropy choices [13].

After some transient time which depends on the size
of the system the isotropic and anisotropic models achieve
a statistically stationary state (i.e. self-organized criti-
cal state) in which the density of fitness values is uni-
formly distributed on [fc, 1] and vanishes on [0, fc], where

the critical threshold value fc depends on the lattice di-
mension. On the 2-dimensional lattice considered here,
fc � 0.328 [3] for the isotropic BS model and fc � 0.439
for the anisotropic BS model. The difference between the
critical threshold values of isotropic and anisotropic BS
models comes from the change in the rates of the spreading
out of avalanches. Once the stationary state is achieved,
the temporal and spatial correlation functions are power-
law in both models signifying the existence of a critical
state with no characteristic length or time scales (scale
invariance). These correlations can be used to determine
the universality classes of such models. The distribution
of the absolute distance x between successive minima is
a good example for the spatial correlation and defined
by Pjump(x) ∼ x−π, where π � 2.92 for the isotropic
BS model and π � 2.57 for the anisotropic BS model on
a square lattice. The temporal correlations Pfirst(t), the
distribution of first return times, and Pall(t), the distribu-
tions of all return times scale as Pfirst(t) ∼ t−τfirst and
Pall(t) ∼ t−τall , where τfirst � 1.24 and τall � 0.71 for the
isotropic BS model; τfirst � 1.32 and τall � 0.85 for the
anisotropic BS model. These different values of π, τfirst

and τall suggest that the isotropic and anisotropic BS
models belong to different universality classes. Our simu-
lation results for the critical exponent values of temporal
and spatial correlations given above are in good agreement
with the known results for 2d BS model [3,13–15].

3 Damage spreading

As mentioned in Section 1, the sensitivity to the initial
conditions of the isotropic and anisotropic BS models
on a square lattice can be studied by damage spread-
ing technique. This technique has been used in the lit-
erature previously to investigate the propagation of local
perturbations in 1d BS model [8–12,16,17]. In these works,
measuring the evolution of the discrepancy between two
initially close configurations under the same noise, it was
shown that this distance exhibits an initial power-law di-
vergence, followed by a finite size-dependent saturation
regime.

The algorithm for the BS model on a square lattice
with N = L×L fitness values can be introduced as follows:

1. Once the stationary state has been achieved, consider
the system as replica 1 denoted by f1

i, j .
2. Produce an identical copy of f1

i, j and introduce a small
damage in this copy by interchanging the site with
minimum fitness with a randomly chosen site (denote
the new replica as f2

i, j).
3. Let both replicas (f1

i, j and f2
i, j) evolve in time using

always the same set of random numbers.

We can now define the Hamming distance between two
replicas as,

D(t) =

〈
1
N

L∑
i, j=1

|f1
i, j − f2

i, j |
〉

, (3)
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Fig. 1. Time evolution of the
normalized Hamming distance for
different transient times of the
isotropic (left) and anisotropic
(right) BS models on a square
lattice with N = 200 × 200 fitness
values. As the transient time in-
creases, the slope value decreases
and eventually, converges on a fixed
value. For N = 200 the slope values
are α � 0.66 and α � 0.74 for
the isotropic and anisotropic BS
models, respectively.

Fig. 2. Time evolution of the
normalized Hamming distance for
five different system sizes of the
isotropic (left) and anisotropic
(right) BS models. In N → ∞
limit, the slope values are esti-
mated as α = 0.83 ± 0.03 for the
isotropic (left) and α = 0.91 ± 0.03
for the anisotropic case (right),
respectively (see Fig. 3).

where 〈· · · 〉 stays for the configurational averages over var-
ious realizations. Although, one of us introduced a new
definition of the Hamming distance for the damage spread-
ing technique [16–18], which allows one to analyze both
short- and long-time dynamics, in this work we use the
standard definition given in (3), since we aim to analyze
the short-time dynamics better by performing extensive
simulations.

In our simulations, all the results are obtained by av-
eraging over 800 realizations, which is enough to avoid
the fluctuations. The largest system size that we achieve
is N = 400 × 400 = 1.6 × 105 for both isotropic and
anisotropic versions of the BS model. In order to let the
system achieve the statistically stationary state we choose
an appropriate transient time for each lattice size. The
choice of the number of transients is important to obtain
the most realistic slope value. For a fixed lattice size, one
can attain a couple of different transient times each of
which is enough to observe the power-law growth of the
Hamming distance. But, as it can be seen from Figure 1,
the smallest transient time gives the largest exponent. As
the transient time increases, the exponent value decreases
until it reaches a fixed value and further increment of the

transient time does not affect the slope anymore. This is
the most reliable way of choosing the appropriate tran-
sient time for each system size. Otherwise one can easily
overestimate the exponent of the power-law growth. In our
simulations, we choose this number as 4 × 105, 7 × 105,
1 × 106, 2.4 × 106 and 6.4 × 106 for 50 × 50, 75 × 75,
100 × 100, 200 × 200 and 400 × 400 lattices, respectively.
Once the stationary state is achieved by attaining the most
appropriate transient time, one can study the short-time
dynamics of the model using the measure given in equa-
tion (3). For 1d isotropic and anisotropic BS models, it
is known from the literature that this measure exhibits
initially a power-law growth such as D0(t) ∼ tα and satu-
rates at a constant value [8–12,16,17]. As it is evident from
Figure 2, our simulation results claim that the procedure
that describes the time evolution of the Hamming dis-
tance in 1d isotropic and anisotropic BS models remains
true also for 2d isotropic and anisotropic BS models. The
limiting case exponents are obtained as α � 0.83 ± 0.03
and α � 0.91± 0.03 for the isotropic and anisotropic ver-
sions of the BS model, respectively using the extrapolation
in Figure 3. These results of 2d can be compared to the
ones coming from the 1d cases (namely, α = 0.48 and
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Fig. 3. The confidence interval of α in N → ∞ limit. From this
scaling we estimate the growth exponent of Hamming distance
as α = 0.83 ± 0.03 and α = 0.91 ± 0.03 for the isotropic (�)
and anisotropic (�) BS models, respectively.

α = 0.53 for the 1d isotropic and 1d anisotropic cases,
respectively [12]). The increase of the exponent as the
dimension increases, for both isotropic and anisotropic
cases, reveals that the ability of the system to cover the
whole lattice increases with the dimension. It is also pos-
sible to compare these results with the mean-field values
(∼1) obtained in [10] for the ring model and in [19] for the
coherent noise model.

3.1 Dynamical exponent and finite size scaling

The second important exponent defined by z is called
the dynamical exponent and comes from the scaling of
τ(N) ∼ Nz, where τ is defined to be the value of t at which
the power-law increasing part of the Hamming distance
measurement crosses over onto the saturation regime for
fixed N (namely, in Fig. 2, intersection of two straight lines
drawn through the linearly increasing power-law curve and
the horizontal constant plateau). From Figure 4, we ob-
tained the dynamical exponent as z � 0.84 and z � 0.73
for the isotropic and anisotropic versions, respectively.

The obtained exponents α and z can be used to an-
alyze the finite size scaling behavior of the isotropic and
anisotropic BS models on a square lattice. Namely, us-
ing the exponent values one can control if the normalized
Hamming distance D(N, t) = 〈D(t)/D(1)〉 obeys the fol-
lowing finite size scaling behavior,

D(N, t) ∼ NβF

(
t

Nγ

)
, (4)

where β = αγ and γ = z (β � 0.69, γ � 0.84 and β � 0.66,
γ � 0.73 for the isotropic and anisotropic cases, respec-
tively). Substitution of corresponding exponent values in
equation 4 leads to a clear data collapse for each version

Fig. 4. Log-log plot of τ versus N for the five curves given in
Figure 2. The estimated dynamical exponent values are z =
0.84 and z = 0.73 for the isotropic (�) and anisotropic (�) BS
models, respectively.

of BS model, as it can be seen in Figure 5. Different val-
ues of the dynamical exponent obtained for isotropic and
anisotropic cases as well as 1d and 2d cases indicate that
the dynamical property, characterized by the time needed
to cover all lattice sites, differs for each case. These val-
ues are also different from the mean-field model results
(∼1) [10,19], which clearly states that the time for the
system to reach the plateau scales linearly with the lat-
tice size.

4 Discussion and conclusion

We study the short-time dynamics of 2d isotropic and
anisotropic BS models on a square lattice. Our exten-
sive simulation results for the power-law growth of the
temporal and spatial correlations are in good agreement
with the known results of the previous works. Moreover,
the time evolution of the Hamming distance is studied
by implementing the damage spreading technique and it
is revealed that 2d isotropic and anisotropic BS models
exhibit weak sensitivity to the initial conditions as it is
the case for 1d BS model on a chain. It is shown that
the scaling of the Hamming distance strongly depends on
the choice of the transient time. That is, if one chooses a
relatively large transient time for a fixed system size N
to have the system at the statistically stationary state, a
power-law behavior of the Hamming distance in time can
be observed. But it is seen that increasing the transient
time leads to a smaller slope value α. The most realis-
tic transient time can be attained by observing the slope
value of the time evolution of the Hamming distance until
it reaches a fixed value. Eventually, we find the values of
the parameter α equal to 0.83 ± 0.03 and 0.91 ± 0.03 by
implementing the damage spreading technique on the five
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Fig. 5. Data collapse of finite size scaling given in equation (4) for the five curves of Figure 2 in the isotropic (left) and
anisotropic (right) BS models.

different lattice sizes, 50×50, 75×75, 100×100, 200×200
and 400×400, of the isotropic and anisotropic BS models.
The numerically obtained α values can be considered as a
good estimation for α in N → ∞ limit and together with
the dynamical exponent z lead to a data collapse of the
finite size scaling for the five different lattice sizes of the
isotropic and anisotropic BS models.
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